
 1

A Case Study in Software Adaptation
Giuseppe Valetto
Telecom Italia Lab

Via Reiss Romoli 274
10148, Turin, Italy
+39 011 2288788

Giuseppe.Valetto@tilab.com

Gail Kaiser
Columbia University

Department of Computer Science
New York, NY 10027, United States

+1 212 939 7081

Kaiser@cs.columbia.edu

ABSTRACT
We attach a feedback-control-loop infrastructure to an
existing target system, to continually monitor and
dynamically adapt its activities and performance. (This
approach could also be applied to “new” systems, as an
alternative to “building in” adaptation facilities, but we do
not address that here.) Our infrastructure consists of
multiple layers with the objectives of 1. probing,
measuring and reporting of activity and state during the
execution of the target system among its components and
connectors; 2. gauging, analysis and interpretation of the
reported events; and 3. whenever necessary, feedback
onto the probes and gauges, to focus them (e.g., drill
deeper), or onto the running target system, to direct its
automatic adjustment and reconfiguration. We report on
our successful experience using this approach in dynamic
adaptation of a large-scale commercial application that
requires both coarse and fine grained modifications.

1. INTRODUCTION
Our approach to adaptation adds a feedback control loop
outside and orthogonal to the legacy system’s main
computation, control and communication. (Note that by
legacy we mean any pre-existing software, not necessarily
truly ancient software constructed in, say, COBOL or
Fortran.) The only direct interaction with the target
system is to insert (or wrap) probes that detect system
events and impose (in some target-specific manner)
effectors that can make adjustments and reconfigurations
in that system. System models must also be devised
based on that target system’s functional and extra-
functional properties, protocols, architecture, domain
model, etc., in order for higher-level gauges to interpret
probe emissions and for controllers to decide upon and
enact system repairs and adaptations. System models can
be developed piecemeal and incrementally, with respect

to selected system views or substructures, so a priori full-
scale analysis is unnecessary.
Others have also proposed to control the behavior and
performance of a running application, either as a
promising generic coordination mechanism [1], or
attacking specific aspects of dynamic adaptation: dynamic
service composition and management [21], deployment
[13], self-modification [8], and “perpetual testing” [16].
The major distinctions of our approach are the decoupling
of the adaptation facilities from the target system and
further the independence from any underlying support
framework. These together enable a wide spectrum of
adaptation, with varying granularity, from the
configuration of the target architecture as a whole, to the
pairwise interactions between components, down to the
tweaking of the inner state of single components.

Previous papers [22][11][14] introduced our concepts,
model and system – called Kinesthetics eXtreme (KX,
pronounced “kicks”) - for applying dynamic adaptation
facilities “from the outside” of a given target system. In
this paper, we evaluate the model’s merits and limitations
based on experience gained by putting it to test on a real-
world, mass-market Internet service.

2. KX INFRASTRUCTURE
2.1 Overview

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’02, Month 1-2, 2002, City, State.
Copyright 2002 ACM 1-58113-000-0/00/0000…$5.00.

Figure 1. Idealized Infrastructure

Interpretation

Collection

Configuration

Probes

Gauges

Controllers

Decision

Effectors

Legacy System(s)

Gauge Bus

Probe Bus

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2002 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
A Case Study in Software Adaptation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency,3701 North Fairfax
Drive,Arlington,VA,22203-1714

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
We attach a feedback-control-loop infrastructure to an existing target system, to continually monitor and
dynamically adapt its activities and performance. (This approach could also be applied to "new" systems,
as an alternative to "building in" adaptation facilities, but we do not address that here.) Our infrastructure
consists of multiple layers with the objectives of 1. probing measuring and reporting of activity and state
during the execution of the target system among its components and connectors; 2. gauging, analysis and
interpretation of the reported events; and 3. whenever necessary, feedback onto the probes and gauges, to
focus them (e.g., drill deeper), or onto the running target system, to direct its automatic adjustment and
reconfiguration. We report on our successful experience using this approach in dynamic adaptation of a
large-scale commercial application that requires both coarse and fine grained modifications.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 2

Figure 1 shows an idealized view of our infrastructure:
Initially, data is collected from the running target system.
It is instrumented with non-invasive probes that report
raw data to other layers via the Probe Bus. The data is
then interpreted via a set of gauges that map the probe
data into various models of the system. The gauges then
report their findings to the Gauge Bus. Then the Decision
and Control layer can analyze the implications of the
interpreted data on overall system performance and make
decisions on whether to: (1) introduce new gauges in the
interpretation layer to analyze further, or disable some as
superfluous; (2) deploy new probes to provide more
detailed information to the remaining gauges, or turn
some off to reduce “noise”; and/or (3) reconfigure the
system itself, perhaps changing the running system’s
structure by introducing new modules or modifying
system or component parameters. The system
reconfiguration would be carried out via
deployment/activation of software effectors to
reconfigure, tune or adapt individual components and/or
major substructures of the system.
We emphasize that this infrastructure model is largely
independent of the running system. However, this is not
to say that the specific probes, gauges, controllers,
effectors and models are themselves independent of the
running system – they are not. The probes and effectors
must often be specialized to the implementation
technology; the gauges and decision mechanisms must be
specialized to the problem domain and environmental
context. However, we anticipate that reuse should be
commonplace, such as for probes and gauges geared
towards availability, robustness, network QoS, etc.

2.2 Monitoring
Probing is a necessary prerequisite for monitoring the
execution of a running system. We need a minimally
invasive approach that can be guaranteed to have zero or
negligible effect on the performance and reliability of the
system. A probe here is an individual sensor attached to
or associated with a running program – or a component or
connector of a running program. A probe can sense some
portion of the program's, or its environment's, execution
and make that data available by issuing events. One focus
of the DARPA DASADA program [10], under which KX
has been developed to date, has been to agree upon a
“standard” API for controlling and reading (and adding
and removing) probes.
Most of our own work has focused on interoperable
infrastructure, rather than the probe technology itself. We
use a variety of probes developed by outside sources as
well as ourselves (e.g., the “probelet” in Figure 2, not
discussed here), and can “drop in” any probe technology
meeting the DASADA standard API [2]. For example,
OBJS’ ProbeMeister [16] dynamically inserts probes into
Java byte code, and Teknowledge’s “instrumented

connectors” [3] replace Win32 DLLs with pre-
instrumented libraries.
We have proposed the “Smart Events” XML Schema [8]
as a standard format for structuring probe output data.
Our intent is to unify the disparate ways in which the
varied probe technologies describe observed events. This
Schema includes extension points for inserting additional
tag structures appropriate for specific probe and/or gauge
technologies. We are aware that XML text is verbose, so
we are investigating efficient “wire formats” for XML-
based event notations – which would allow the wide base
of XML processing tools to be employed at final
destinations but incurring relatively little traffic penalty.
Our implementation also supports the unstructured
attribute/value pairs handled by today’s content-based
messaging event buses like U. Colorado’s Siena [5].

2.3 Dynamic Analysis
Gauges are software entities that gather, filter, aggregate,
compute, and/or analyze measurement information about
software systems. In particular, they interpret probe data
against various models, to produce higher-level outputs:
gauges can emit events just as can probes can. These
events are typically at a higher level of abstraction, but
the aforementioned Smart Events XML Schema has been
defined to support both levels. As with probes, a major
concern of the DASADA program has been defining a
standard gauge API to allow interoperability [20].

Figure 2. KX Probes and Gauges

Our own gauges operate within a framework consisting of
two major components, Event Packager and Event
Distiller, shown in Figure 2. The Event Packager
transforms, when necessary, the raw-data format of
legacy probe output into Smart Events-compatible event

 3

streams (using probe- or probe source-specific plugins). It
also packages and logs these events in an SQL-based
persistent store for possible replaying. The replay can be
either “precisely timed” or “fast-forwarded”.
The Event Distiller recognizes complex temporal event
patterns from multiple probe sources (conceptually
similar to Stanford’s Complex Event Processing [15]),
and constructs higher-level measurements to reflect the
system state represented by the events. The Event
Distiller is “programmed” by a collection of
condition/action rules, where the condition specifies the
event pattern and the action specifies what to do when
that pattern is recognized – typically generation of an
appropriate higher-level event. These events interface
with the decision layer and, optionally, gauge visualizers.
Both the probe and gauge buses follow publish/subscribe
models with content-based routing, so event producers
and consumers do not need to “know about” each other.

2.4 Feedback to Reconfiguration
Gauge outputs are input to a decision process that
determines what course of action to take, if any. The
decision process may be supported by a variety of tools,
including, e.g., an architecture transformation tool (such
as CMU’s Tailor [20]) that reacts to gauges that detect
differences between the running and the nominal
architecture. Executing high-level repair action(s), e.g., to
reconfigure the architecture, will often involve several
activities at the effector (implementation) level. Some of
these activities may be conditional or dependent on
others, or may simply fail, so one needs to be able to
express the adaptation process as a workflow rich enough
to express contingency plans. This decision and control
layer might also invoke the management actions of the
probe and gauge layers on occasion, for example, to
induce refined measurements before proceeding with
adaptation.

Figure 3. KX Feedback Loop Using Workflakes

We use our Workflakes decentralized workflow system
[23], as illustrated in Figure 3, to instantiate and
coordinate all kinds of adaptations of the running system,
from local actions to more global topological changes.
Workflakes is built on top of BBN’s Cougaar distributed
agents architecture [7].
We do not yet employ a true workflow notation to
describe these activities; the workflow is currently
expressed as a set of coding patterns in Java. However,
we are experimenting with U. Massachusetts’ Little-JIL
workflow formalism [6]. Any chosen process workflow
specification language must support the description of the
actions to be applied to repair and adapt a system,
including at which location(s) the changes should be
applied. The language needs to specify both sequential
and parallel execution of actions, and how to deal with
unsuccessful actions, e.g., by retrying, attempting
alternate actions, or rolling back changes.
As with probes, effectors could be realized with various
technologies. Effector actions range over a spectrum from
simple adaptations – relatively low-level adjustments to a
well-defined target system API, e.g., changing a process
variable or calling a method – to potentially complex
reconfiguration commands that cause structurally
significant changes, possibly involving high-level
adjustments at the system/environmental level. The latter
may involve, e.g., starting, migrating, restarting, or
stopping one or more processes, and/or rearranging the
connections among components.
Workflakes currently conducts an adaptation workflow
by selecting, instantiating and dispatching one or more of
our Worklets mobile agents [21], and coordinating the
activities of the deployed Worklets on the target system’s
components and connectors. Worklets carry Java mobile
code encased in “jackets” that determine conditional
execution and repetition, timing, etc. Note that effectors
are the most target-specific aspect of our approach, and
often must be handcrafted.
Our current feedback loop is admittedly relatively ad hoc,
depending on manually constructed gauge rules that
trigger “canned” workflows - albeit with fairly
sophisticated instantiation parameters including access to
a “Worklet factory” - to perform reconfigurations. That
is, the decision component shown in Figure 3 was
dispersed between the Event Distiller gauges and the
Workflakes workflow engine when the results reported
here were achieved. However, we have recently begun
experimenting with formalized architectural models as the
base for adaptation decisions, using CMU’s Acme toolkit
[4] with repair plans then constructed by Tailor. Such
architectural models for a given target system could be
created a priori by hand (as in [7]), or generated based on
analysis of probed event traffic (as investigated by [17]).
We can now build gauges that recognize structural

 4

changes based on these models. A variety of mechanisms
could be used in the analysis, including expert systems
and constraint solvers, as well as hard-coded repair rules.

3. DYNAMICALLY ADAPTING AN
INTERNET MASS-MARKET SERVICE
Our case study concerns a multi-channel instant
messaging (IM) service for personal communication,
which operates on a variety of channels, such as the Web,
PC-based Internet chat, Short Message Service (SMS),
WAP, etc. The service is currently offered on a 24/7/365
basis as a value-added service to thousands of users.

Our goals are twofold: We want to achieve service
optimization, with respect to the overall QoS perceived by
the end users, which can be achieved by adapting the
functional and/or extra-functional characteristics of the
various service components as well as their interactions.
The requirements include on-the-fly architectural
modification for scalability, in response to the detection
of host- and component-specific load thresholds, as well
as on-the-fly reconfiguration of the server farm hosting
the service. We also aim to support dynamic monitoring
and control of the running service, that is, simplify and
resolve a number of concerns related to the continuous
management of such a complex distributed application.
These requirements include automated deployment of the
service code; automated bootstrapping and configuration
of the service; monitoring of database connectivity from
within the service; monitoring of crashes and shutdowns
of IM servers; monitoring of client load over time; and
support for “hot” service staging via automated rollout of
new versions and patches.

Our case study is organized as a series of iterations,
which aim at incrementally fulfilling requirements
originating from needs discovered in the field by the
service provisioning organization, and elicited from the
application development and maintenance team. For each
iteration, results are first evaluated in the lab; then new
requirements are accepted for the next iteration, while the
results produced are delivered and put to test on the field.
We report here only on the results of the first iteration,
conducted August – December 2001. (The second
iteration, February – July 2002, is still in progress.)

The service runtime environment consists of a typical
three-tiered server farm: a load balancer provides the
frontend of the service to all end-users and redirects all
client traffic to several replicas of the IM components,
which are installed and operate on a set of middle tier
hosts. The various replicas of the IM server all share a
relational database and a common runtime state
repository, which make up the backend tier, and allow
replicas to operate in an undifferentiated way as a
collective service. Some of the IM servers provide

additional facilities, which handle access to the service
through specific channels, such as SMS or WAP, and
interoperate with third-party components and resources
that remain outside of the scope of the service, e.g., the
gateways to the cell phone communication network.
Those extra facilities wrap the core IM functionality in
various ways. Given this kind of modularity, it is
possible to achieve continual validation of all of the
service components in a server farm in a consistent way,
by applying probing, gauging and repair in the first place
on the core IM server components, and extending them as
needed to validate any critical features of the additional
wrapping components.

The current implementation successfully addresses all of
the first iteration requirements using a specific set of
probes, gauges and repairs on top of the common
facilities provided by the KX platform. Workflakes
addresses the manageability requirements by taking
responsibility to correctly initiate the service software via
a completely automatic process, which replaces the
original manual procedures and later scripts for the
installation, deployment and bootstrapping of service
components. This process is enabled by explicitly
integrating knowledge about the service architecture and
the runtime environment of the server farm into the logic
and data loaded at startup onto the Workflakes engine.
Furthermore, Workflakes addresses QoS requirements,
responding to scalability needs with a reactive process
that orchestrates new deployments of IM servers and
opportune reconfiguration of the load balancer (IBM
commercial software).

Figure 4. The IM service architecture

After startup, Workflakes selects one of the hosts from its
internal representation of the runtime environment of the
server farm and sends out a Worklet mobile agent to it.
This Worklet carries and executes bootstrapping code for
the IM server and configures it with all the necessary

Mobile
NTW

Mobile
NTW

Clientsbrowserbrowser

Load Balancing

SMS-C

IM

Server

WAP Gateway
Web Appl.

IM

Server
Web Appl.

IM

Server
SMS Gateway

IM

Server
SMS Gateway

IM

Server

R-DBMS

Server
Farm

Web Appl.

IM

Server
Web Appl.

IM

Server

PC Client

Shared state

PC Client

Web Appl.

IM

Server
Web Appl.

IM

Server

 5

parameters (such as the JDBC connection handle to the
DBMS, the port numbers for connections by clients and
other IM servers, etc.). Notice that not only the
configuration information, but also the executable code of
the IM server is deployed and loaded on demand from a
code repository made available to the incoming Worklet.
This exploits an advantage of a code-pulling feature of
the Worklets agent platform, which allows one to do
away with any preliminary installation of the application
code on all machines taking part in the server farm -
greatly simplifying the bootstrapping, staging and
evolution of the service. (An analogous approach is
followed in U. Colorado’s Software Dock [11].)

When the Worklet instantiates an IM server, certain
probes are activated to track its initialization. In the event
of an unsuccessful initialization, the likely cause is
inferred by KX on the basis of the probes’ output and
reported to a dashboard GUI for the human management
of the service, as well as to the Workflakes process.
Workflakes may react by deciding to try to bootstrap an
IM server on the same machine again, or on another one.
Otherwise upon successful initialization, the process
dispatches another Worklet onto the load balancer, to
instruct it to accept traffic for the IM service and pass it to
the initialized server at the right host address and port.

Following the initial bootstrapping phase, Workflakes
takes a reactive role, while the KX platform starts
monitoring the dynamics of service usage. Certain probes
and gauges are activated to track user activity, such as
logging in and out of the initialized server. IM servers
have an associated load threshold, which in the case of
this particular service is most simply expressed in terms
of the number of concurrently active clients in
relationship with the memory resources of their host.
When that threshold is passed, the gauges notify
Workflakes, which reacts by trying to scale up the
service. It selects an unused machine still available in the
server farm, and repeats the bootstrapping process
fragment on that machine, including the update of the
load balancer configuration. Of course, this scaling-up
policy can be repeated as many times as the number of
machines in the server farm allows.

Notice that the Worklet bootstrapping a new IM server
must carry an extra piece of configuration: an indication
of some other alive IM server. This enables the new
instance to sync up with the IM server pool and its shared
state, and allows it to function as an undifferentiated
replica. After a successful initialization of a subsequent
IM server, client requests begin to arrive at that server via
the reconfigured load balancer, achieving scalability and
thus enhancing overall reliability and performance. Other
conditions that can prompt new deployments and
bootstrapping of IM servers include failures of some

existing server replicas, which are inferred by gauges
from specific sequences of probe events.

Thus KX together with Workflakes effectively fulfills our
deployment, bootstrapping and scalability requirements,
supporting both the service monitoring/control and
service optimization goals flexibly and dynamically.
Minor changes to the bootstrapping process sketched
above enable any service evolution campaign to be
expressed as a process with tasks that withdraw old server
instances from the load balancer (thus disallowing new
traffic to be assigned to them), shut them down when
traffic is absent or minimal, and conversely start up,
register on the load balancer, and make available to users
other server instances with the new code release.

4. THE BOTTOM LINE
• The original manual deployment procedure required

2-3 person-days from scratch on-site, i.e., on the
premises of a server farm. Using scripts and
assuming DBMS and web application servers already
resident, that was reduced this to ½-1 person-day on-
site. With KX, that is reduced to a few minutes from
a remote location - assuming resident servers like for
the aforementioned scripts.

• The scripts consisted of about 500 lines of csh or
other equivalent Unix shell. Using KX, this is
reduced to around 220 lines of Java code that runs on
Win32 platforms as well as Unix.

• The monitoring and maintenance effort originally
required 1 sysadmin on-site 24/7/365, monitoring the
state of the service periodically and taking care of
trouble tickets as they came, plus 1 technical team on
call for further support. KX enables continuous
remote monitoring of major service parameters, with
automated alarms, and completely automated
resolution of a set of well-known fault conditions.

• Considering one such specific condition: KX
recognizes that load threshold is passed in a matter of
<1 second, and takes approximately 40 seconds to
instantiate a new service instance and load-balance it.
Previously, there was no way to detect an overload
with direct evidence, and to scale up automatically in
response. Performance degradation of IM server(s)
was supposedly kept under control by the sysadmin,
who would check the number of concurrent users on
each server - which is periodically logged - and
would manually start up an additional server before
such number approached the overload threshold.
Such manual inspection was potentially error-prone,
risking that resource starvation (e.g., RAM shortage)
could remain unnoticed until the server broke down
and had to be restarted.

 6

5. ACKNOWLEDGMENTS
KX is a team effort of Columbia’s Programming Systems
Lab. KX components can be downloaded from
http://www.psl.cs.columbia.edu/software.html. The
general infrastructure model and concepts have been
developed in collaboration with: Bob Balzer and Dave
Wile, Teknowledge; Nathan Combs, BBN; David Garlan
and Bradley Schmerl, CMU; George Heineman, WPI;
David Wells, OBJS; and Lee Osterweil, UMass. Pier
Giorgio Bosco, Mario Costamagna, Matteo Demichelis,
Elio Paschetta and Roberto Squarotti at TILAB
contributed to the case study. The Programming Systems
Lab is funded in part by Defense Advanced Research
Project Agency under DARPA Order K503 monitored by
Air Force Research Laboratory F30602-00-2-0611, by
National Science Foundation grants CCR-9970790 and
EIA-0071954, and by Microsoft Research. The work at
TILAB is funded in part by EURESCOM project P-1108
(Olives).

6. REFERENCES
[1] G. Alonso, Workflow Assessment and Perspective, in

International Process Technology Workshop, September
1999.

[2] B. Balzer, Probe Run-Time Infrastructure, Teknowledge,
December 2001. http://schafercorp-
ballston.com/dasada/2001WinterPI/ProbeRun-
TimeInfrastructureDesign.ppt.

[3] R.M. Balzer, N.M. Goldman, Mediating Connectors, in
ICDCS Workshop on Electronic Commerce and Web-
Based Applications, June 1999.

[4] Carnegie Mellon University, Acme Web, The Acme
Architectural Description Language. http://www-
2.cs.cmu.edu/~acme/.

[5] A. Carzaniga, D.S. Rosenblum, A.L. Wolf, Design and
Evaluation of a Wide-Area Event Notification Service,
ACM Transactions on Computer Systems, 19(3):332-383,
August 2001.

[6] A.G. Cass, B. Staudt Lerner, B., E.K. McCall, L.J.
Osterweil, S.M. Sutton, Jr., A. Wise, Little-JIL/Juliette: A
Process Definition Language and Interpreter, in 22nd
International Conference on Software Engineering, June
2000.

[7] S.-W. Cheng, D. Garlan, B. Schmerl, J.P. Sousa, B.
Spitznagel, P. Steenkiste, Using Architectural Style as a
Basis for Self-repair, in Working IEEE/IFIP Conference
on Software Architecture 2002, August 2002.

[8] J.M. Cobleigh, L.J. Osterweil, A. Wise, B. Staudt Lerner,
Containment Units: A Hierarchically Composable
Architecture for Adaptive Systems, in 10th International
Symposium on the Foundations of Software Engineering,
November 2002.

[9] Columbia University Programming Systems Lab,
DASADA Probe Event Schema, January 2002.
http://www.psl.cs.columbia.edu/kx/smartevent-
schema.html.

[10] Cougaar Home Page, Welcome to the Cognitive Agent
Architecture (Cougaar) Open Source Website.
http://www.cougaar.org.

[11] D. Garlan, B. Schmerl, J. Chang, Using Gauges for
Architecture-Based Monitoring and Adaptation, in
Working Conference on Complex and Dynamic Systems
Architecture, December 2001.

[12] P.N. Gross, S. Gupta, G. E. Kaiser, G.S. Kc, J.J. Parekh,
An Active Events Model for Systems Monitoring, in
Working Conference on Complex and Dynamic Systems
Architecture, December 2001.

[13] R.S. Hall, D. Heimbigner, A.L. Wolf, A Cooperative
Approach to Support Software Deployment Using the
Software Dock, in 21st International Conference on
Software Engineering, May 1999.

[14] G. Kaiser, P. Gross, G. Kc, J. Parekh, G. Valetto, An
Approach to Autonomizing Legacy Systems, in Workshop
on Self-Healing, Adaptive and Self-MANaged Systems,
June 2002.

[15] D.C. Luckham, B. Frasca, Complex Event Processing in
Distributed Systems, Stanford University Technical
Report CSL-TR-98-754, 1998.

[16] Object Services & Consulting, Inc., ProbeMeister 2002.
http://www.objs.com/DASADA/ProbeMeister.htm.

[17] Object Services and Consulting, Inc., Software Surveyor
Dynamically Deducing Componentware Configurations.
http://www.objs.com/DASADA/.

[18] Perpetual Testing.
http://www1.ics.uci.edu/~djr/edcs/PerpTest.html.

[19] J. Salasin, Dynamic Assembly for System Adaptability,
Dependability, and Assurance (DASADA).
http://www.darpa.mil/ipto/research/dasada/.

[20] B. Schmerl, D. Garlan, Exploiting architectural design
knowledge to support self-repairing systems, in 14th
International Conference on Software Engineering and
Knowledge Engineering, July 2002.

[21] S.K Shirvastava, L. Bellissard, D. Feliot, M. Herrmann,
N. De Palma, S.M. Wheater, A Workflow and Agent
based Platform for Service Provisioning, in 4th
IEEE/OMG International Enterprise Distributed Object
Computing Conference, September 2000.

[22] G. Valetto, G. Kaiser, G.S. Kc, A Mobile Agent Approach
to Process-based Dynamic Adaptation of Complex
Software Systems, in 8th European Workshop on Software
Process Technology, June 2001.

[23] G. Valetto, G. Kaiser, Combining Mobile Agents and
Process-based Coordination to Achieve Software
Adaptation, Columbia University Department of
Computer Science, CUCS-007-02, March 2002.

